Power Autocorrelative Function

T. K. Yanev

The spectral reflective characteristics (SRC) of the natural formations are obtained practically as a discrete sequence of values $r\left(\lambda_{i}\right), i=1, \ldots, n$ of the reflective index of the formation. This permits the SRC description through the vector tip $X\left(x_{1}, \ldots, x_{n}\right)$ in the finite multidimensional space with dimensionality n, in which the subject descriptive signs are $x_{i} \equiv r\left(\lambda_{i}\right)$. SRC are stochastic functions because of the natural dispersion of the formation parameters. This property of theirs necessitates the use of statistical probability methods of the SRC classification even when the measurement errors are so small as to be neglected. From the point of view of minimization of the probability R for an error of lst gender ("omission"), or an error of 2nd getder (erfoneous identification "false alarm"), most suitable proves to be the Bayes method of the minimum risk at the SRC classitication analysis. In the general case, when the autocorrelative SRC matrix is not diagonal, the analytical conciusions become yery difficult. But in some particular cases it is possible to formulate relativeiy simple criteria of the risk function R magnitude at the detemination appurtenance of the vector-observation $X\left(x_{1}, \ldots, x_{n}\right)$ to one of the two classes $-k$ or m. For instance, the risk function simplifies considerably at the following limiting conditions:
a) Signs x are independent (particularly $n=1$),
b) SRC of the two vector-realizations are connected with the relation: $r_{m}(\lambda)=(1+\Theta) r_{h}(\lambda), \theta=$ const $\leqslant 1$.
c) k - and m-classes have normal distributions with parameters $\mu_{n_{i^{\prime}}} \mu_{m_{z}}$ $==(1+\Theta) \mu_{k_{i}}, \sigma_{k_{i}}=V \mu_{k_{i}}, \sigma_{m_{i}}=V \mu_{k_{i}}=V(1+\Theta) \mu_{k_{i}}$, where $\mu_{k_{i}}$ is the mathematical expectation of $r_{k}\left(\lambda_{i}\right)$, and $\sigma_{k_{i}}$ is the $r_{k}\left(\lambda_{i}\right)$ variance. The constant V is the variational index. As shown in [3], under these conditions the risk function R is measured with a normalized normal distribution having a coordinate equal approximately to

$$
\begin{equation*}
\eta=\theta / V \tag{1}
\end{equation*}
$$

(after neglecting the high powers of θ).

As in that case, R is determined by the integral $\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-n^{q / 4}} d y, \eta<0$, then the value of R is smallef at a great absolute value of η.

Of course, these limiting conditions are quite strong (condition (b) in particular), but they provide a possibility for analytical conclusions through the criterion (1). They can serve as an orientation for the situation in the general case of the SRC nondiagonal covariance matrix.

The space of $X\left(x_{1}, \ldots, x_{n}\right)$ can be formed not only through $r(\lambda)$, but also by the r ($)$ transformations with a suitable operator. Such a transformation has justification of performance only when the risk function value could be reduced in the transformed space. Paper [3] shows that the autocorrelative transformations:

$$
\begin{equation*}
C_{M}\left(r_{j}\right)=\sum_{i=1}^{n} \mid r\left(\lambda_{i}\right)-r\left(\lambda_{i}+\tau_{j}\right) ; \tau_{j}=\Delta \lambda . j, j=1, \ldots, n / 2, \Delta \lambda=\lambda_{i+1}-\lambda_{i}=\mathrm{const} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
C_{k}\left(r^{\prime}\right)=\sum_{i=1}^{n}\left[r\left(\lambda_{i}\right)-r\left(\lambda_{i}-x_{j}\right)\right]^{2}, \tag{3}
\end{equation*}
$$

improve the risk fanction for the cases described by the limiting conditions (a), (b) and (c) with the inctease of the $|\eta|$ value. The transformation (3) is given by Kolnogorov [1] and the transformation (2) is defined in [2]. This paper examines the generalization of (2) and (3), namely:

$$
\begin{equation*}
C\left(\tau_{j}\right) \cdots \sum_{i=1}^{n}\left[\mid r\left(\lambda_{i}\right)-r\left(\lambda_{i}+r_{j}\right)\right]^{N}, \quad N=1, \ldots, \infty . \tag{4}
\end{equation*}
$$

We shall accept equation (1) as an effectivity criterion of this transformation. The studies in paper [3] show that C_{m} from equation (3) leads to a smaller value of $|\eta|$ than C_{M} from equation (2). In the general case this justifies the examination of the ratio

$$
\begin{equation*}
\Omega=\frac{\eta_{N-m}}{\eta_{N}}=\frac{\theta_{N-m} V_{N}}{\theta_{N} V_{N-m}} \tag{5}
\end{equation*}
$$

Taking into consideration the limiting condition (b) and equation (4), we obtain the strall parameter Q_{n} by the relation

$$
\begin{equation*}
C_{m}^{(N)}\left(\tau_{j}\right)=\langle 1+\theta)^{N} C_{k}^{(N)}\left(\tau_{j}\right) \tag{6}
\end{equation*}
$$

If we neglect the high powers of Θ in (6), we would obtain $\Theta_{N}-N \Theta$ and then

$$
\begin{equation*}
\Theta_{N} / \Theta_{N-m}=N /(N-m) \tag{7}
\end{equation*}
$$

In order to study the V_{N-m} / V_{N} ratio it is necessary to determine the expressions for $\mu_{C_{N}}$ and ${ }^{\circ} c_{N}$ of $C^{(N)}$ for an arbitrary N. This can be realized by the use of the definition equation (4) and of the dispersion equation of a normal distribution composition.

$$
\begin{align*}
y & =\sum_{i} a_{i} x_{i} \tag{8}\\
\sigma_{y}^{2} & =\sum_{i} a_{i}^{2} \sigma_{x_{i}}^{2}
\end{align*}
$$

In equation (4) the l th realization $r_{l}\left(\lambda_{i}\right)$ of a given class can be expressed as follows:

$$
\begin{equation*}
r_{1}\left(\lambda_{i}\right)=\overline{r\left(\lambda_{i}\right)}+A r_{i}\left(\lambda_{i}\right) \tag{9}
\end{equation*}
$$

where $\overline{\Gamma_{\left(\lambda_{i}\right)}}$ is the mathematical expectation of r in λ_{i} for the examined class. $r_{l}\left(\lambda_{i}+\tau_{j}\right)$ is expressed analogously :

$$
\begin{equation*}
r_{l}\left(\lambda_{i}+\tau_{j}\right)=\overline{r\left(\lambda_{i}+\tau_{j}\right)}+\Delta r_{i}\left(\lambda_{i}+\tau_{j}\right) \tag{9a}
\end{equation*}
$$

Taking into consideration that there follows from condition b) that $V<1$, the high powers of $A r_{t}$ can be neglected and then we obtain after the substitution of (9) and (9a) in (4) in a first approximation:

$$
\begin{equation*}
C_{i}^{(N)} \approx \sum_{i=1}^{n}\left[\left(\bar{x}_{i}-\bar{y}_{i}\right)^{N}+N\left(\bar{x}_{i}-\bar{y}_{i}\right)^{N-1}\left(\Delta x_{i_{i}}-\Delta y_{i_{i}}\right)\right] \tag{10}
\end{equation*}
$$

where it is marked for conventence: $x_{i}=r\left(\lambda_{i}\right), y_{i}=r\left(\lambda_{i}+r_{j}\right)$,
It follows from equation (8) and (10) and condition b) that:

$$
\begin{gather*}
\overline{C^{(N)}}=\sum_{i=1}^{n}\left(\bar{x}_{i}-\bar{y}\right)^{N} \tag{1I}\\
\sigma_{C_{N}}^{2}=V^{2} N^{2} \sum_{i=1}^{n}\left(\bar{x}_{i}-\bar{y}_{i}\right)^{2(N-1)}\left(\bar{x}_{i}^{2}+\bar{y}_{i}^{2}\right) \tag{12}
\end{gather*}
$$

The ratio V_{N} / V_{N-m} is expressed by equations (11) and (12) in the following way:

$$
\begin{equation*}
\frac{V_{N}}{V_{N-m}}=\frac{N}{N-m} \sqrt{\left[\frac{\left.\sum_{i=1}^{n}\left(\bar{x}_{i}-\bar{y}_{i}\right)^{N-m}\right]^{2}\left[\sum_{i=1}^{n}\left(\bar{x}_{i}-\bar{y}_{i}\right)^{2(N-1)}\left(\bar{x}_{i}^{2}+\bar{y}_{i}^{2}\right)\right]}{\left[\sum_{i=1}^{n}\left(\bar{x}_{i}-\bar{y}_{i}\right)^{2(N-m-1)}\left(\bar{x}_{i}^{2}+\bar{y}_{i}^{2}\right)\right]\left[\sum_{i=1}^{n}\left(\bar{x}_{i}-\bar{y}_{i}\right)^{N}\right]^{2}}\right.} \tag{13}
\end{equation*}
$$

There follows from (5), (7) and (13) that the ratio (5) has the form

$$
\begin{equation*}
\Omega=\sqrt{\sqrt{\left[\sum_{i=1}^{n}\left(\bar{x}_{i}-\bar{y}_{i}\right)^{N-m}\right]^{2}\left[\sum_{i=1}^{n}\left(\bar{x}_{i}-y_{i}\right)^{2(N-1)}\left(x_{i}^{2}+\bar{y}_{i}^{2}\right)\right]}}\left[\frac{\left.\sum_{i=1}^{n}\left(\bar{x}_{i}-\bar{y}_{i}\right)^{2(N-m-1)}\left(\bar{x}_{i}^{2}+\bar{y}_{i}^{2}\right)\right]\left[\sum_{i=1}^{n}\left(x_{i}-\bar{y}_{i}\right)^{N}\right]^{2}}{},\right. \tag{14}
\end{equation*}
$$

or it can be written by triple indices:
(14a)

$$
\begin{array}{cl}
\Omega=\frac{\sum_{i, j, k}\left(a_{i}^{N-m} a_{j}^{N-m} a_{k}^{2(N-1)} b_{k}\right)}{\sum_{i, j, k}\left(a_{i}^{N} a_{j}^{N} a_{k}^{2(N-m-1)} b_{k}\right)}, & i=1, \ldots, n_{;} \\
& j=1, \ldots, n \\
a_{i}=\left|\bar{x}_{i}-\bar{y}_{i}\right|, \quad b_{k}=\bar{x}_{k}^{2}+\bar{y}_{k}^{2}
\end{array}
$$

In order to evaluate the effectivity of the N increase, it is necessary to examine the extremums of Ω with respect to N (for that purpose equation (14a) is suitable), and the extremum of the structure of $r(2)$ (equation (14) suits the purpose). In particular, the following system should be solved:

$$
\begin{align*}
& \partial \Omega / \partial x_{i}=0 \tag{15a}\\
& \partial \Omega / \partial y_{i}=0, \quad i=\mathrm{I}, \ldots, n \tag{15b}\\
& \partial \Omega / \partial N=0 \tag{15c}
\end{align*}
$$

There follows from (14) that (15a) and (15b) contain x_{i} and y_{i} in a symmetric manner, i. e. the results from (15a) will be valuable also for (15b). We obtain for (15a) in a developed form:
(16a) $\frac{1}{2} \frac{\partial \Omega}{\partial x_{i}}=\left\{\sqrt{A} B(N-m)\left(\bar{x}_{i}-\bar{y}_{i}\right\}^{N-m-1}+A\left[(N-1)\left(x_{i}-\bar{y}_{i}\right)^{2 N-3}\left(x_{i}^{2}+\bar{y}_{i}^{2}\right)\right.\right.$

$$
\begin{gathered}
\left.\left.+\left(\bar{x}_{i}-\bar{y}_{i}\right)^{2(N-i)} x_{i}\right]\right\} C D-\left\{C \sqrt{D} N\left(\bar{x}_{i}-\bar{y}_{i}\right)^{N-1}\right. \\
\left.+D\left[(N-m-1)\left(\bar{x}_{i}-\bar{y}_{i}\right)^{2(N-m)-3} \cdot\left(\bar{x}_{i}^{2}+\bar{y}_{i}^{2}\right)+\left(x_{i}-\bar{y}_{i}\right)^{2(N-m-1)} \cdot \bar{x}_{i}\right]\right\} A B,
\end{gathered}
$$

where

$$
\begin{gathered}
A=\left[\sum_{i=1}^{n}\left(\bar{x}_{i}-\bar{y}_{i}\right)^{N-m}\right]^{2}, C \cdot \sum_{i=1}^{n}\left(x_{i}-\bar{y}_{i}\right)^{2(N-n-1)}+\left(\bar{x}_{i}^{2}+\bar{y}_{i}^{2}\right), \\
B=\sum_{i=1}^{n}\left(\bar{x}_{i}-\bar{y}_{i}\right)^{2(N-1)} \cdot\left(\bar{x}_{i}^{2}+-\bar{y}_{i}^{2}\right), \quad D-\left[\sum_{i=1}^{n}\left(x_{i}-\bar{y}_{i}\right)^{N}\right]^{2} .
\end{gathered}
$$

The sums A, B, C, D in (16a) are independent of the index $\bar{t}_{\text {, }}$ and \bar{x}_{i} as well as \bar{y}_{i} takes part in the remaining part of the equation in an equal manner for the different values of the index i. Therefore, the system (16a) is reduced to a single eqution, representing a polynomial of x. Stifl, if we take the difference $\bar{x}_{i}-y_{i}$ by module (according to the definition equation (4), then \bar{y}_{i} participates symmetrically to x for each i and in all equations. That is why, the simultaneous satisfaction of (16a) and (16b) demands:

$$
\begin{equation*}
\bar{x}_{i}=\bar{y}_{i} . \tag{17}
\end{equation*}
$$

But it follows from the definition equation (4) that if (17) is fulfilled then $x=$ const.

The derivative (15) is expressed in a developed form by the equation

$$
\begin{equation*}
\frac{\partial Q}{\partial \bar{N}}=\frac{\sum_{i, j, k_{1}, p, q, r}}{}\left[a_{i}^{N-m} a_{j}^{N-m_{i}} a_{k}^{2(N-1)} a_{p}^{N} a_{q}^{N} a_{r}^{2(N-m-1)} b_{k}^{2} l_{n} \frac{a_{i} a_{j} a_{k}^{2}}{a_{p} a_{q} a_{r}^{2}}\right]\left(\frac{\left.\sum_{i, j, h} a_{i}^{N} a_{j}^{N} a_{k}^{2(N-n-1)} b_{k}\right]^{2}}{[}=0 .\right. \tag{16b}
\end{equation*}
$$

$(i, j, k, p, q, r)=1, \ldots, n$.
Obviously (16b) is annulled also by the condition $x=$ const. Therefore, Q from (14a) has an extremum and it appears when $r(\lambda)$-const.

At $N \rightarrow \infty$ the sequence $\left\{\left(\bar{x}_{i}-\bar{y}_{i}\right)\right\}, i=1, \ldots, n$ tends to the sequence $\left\{0,0, \ldots, 0,\left(\overline{x_{j}}-\bar{y}_{j}\right)_{\text {max }}\right\}, j-1, \ldots, k$, where K is the number of the biggest and equal in size differences $\left(\bar{x}_{j}-\bar{y}_{j}\right)_{\max }$. That is why the conditions for ant extremum of (14a) are realized at $N \rightarrow \infty$.

A direct verification can prove that the extremum defined by the sy. stem (15a), ($15 b$) and ($15 c$) is a maximum.

Conclusions

According to the results obtained, each power autocorrelative function, defined by equation (4), diminishes the risk function of equation (1) when its power index increases. But we should not forget that these results have been obtained under the following fimiting conditions: $V \leqslant 1, r_{\mu}(\lambda)$ $(1+\Theta) r_{m}(\lambda), \Theta \leqslant 1$. The increase of the power index N leads to an increase of the role of the neglected terms in the development of $\mu c_{N}, \sigma_{c_{N}}$ and $(1+\Theta)^{N}$; for example, at $N>10$ their contribution in some cases could be higher than $30-40$ per cent even when $V-0.05$ and $\Theta=0.05$. Nevertheless, at relatively small values of N, it is possible to look for an optimum of each concrete set of classes. It is probable that this optimum would be shifted towards the great values of N, when for each one of the M-classes there exists at least one wavelength λ, in which this class has the highest values of $r(\lambda)$, compared with the other classes.

If we take into consideration the higher powers of $A x$ and $A y$ in the expression for $C_{i}^{(N)}$ in equation (10), then the distribution of $C_{i}^{(N)}$ would not be a composition of normal distribution, therefore equations (11) and (12) would not be valuable as sufficient parameters of that distribution description. This would complicate considerably the analytical conclusions for the effectivity of transformations (4).

Notwithstanding the fact that the analytical conclusions of this paper are quite limited, they do provide grounds to expect good effectivity of transformation (4). The verification of this effectivity in the general case of mulfidimensional distributions should be realized as the file of primary information for $r(\lambda)$ has to be transformed into a file of power autocorrelative functions, according to (4), and the Bayes procedure of the minimum tisk or some other convenient criteria should be applied to this file.

References

1. Kolmogorov, A. N. Energy scatter at local isotropic turbutence.-Comp. Rend. Acad. Sci. USSR, 32, 1941.
2. Yanev. T., G. Astardgyian, Ch. Nachev. Obtaining a multude of signs and decision-makitg at the structaral analysis of one-fold subjects. - In : IVth PolishBulgatian Symposium on Big Systems of Information and Management, Vana, X, 1973.
3. Yanev, T., D. Mishev. Discriminant amalysis of atural fomations by a minmum namber of measurements in different wavelengths of the spectral reflective characteristics. - In : Cospar, Varna, VI, 1975.

Степенная аутокорреляционная функция

Т. К. Янев
(Peswme)
Исследованы свойства аутокорреляционной функции вида

$$
C\left(\tau_{j}\right)=\sum_{i=1}^{n}\left[r\left(\lambda_{i}\right)-r\left(\lambda_{i}+\tau_{j}\right)\right]^{n z},
$$

где m - целое положительное число, τ_{j} - шаг корреляции,
λ_{i} - независимая перемевная, $r\left(\lambda_{i}\right)$ - зависимая переменная.
Показано, что применение $C\left(\tau_{f}\right)$ в классификадионном анализе стохастических сигналов типа $r\left(\lambda_{i}\right)$ уменьшает функсию риска при нормальном распределении $r\left(\lambda_{i}\right)$.

